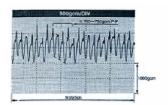
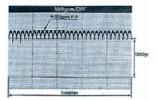
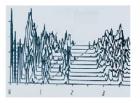
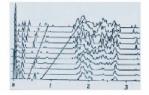
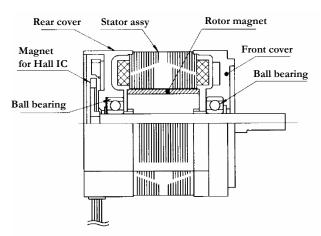

BLDC motor

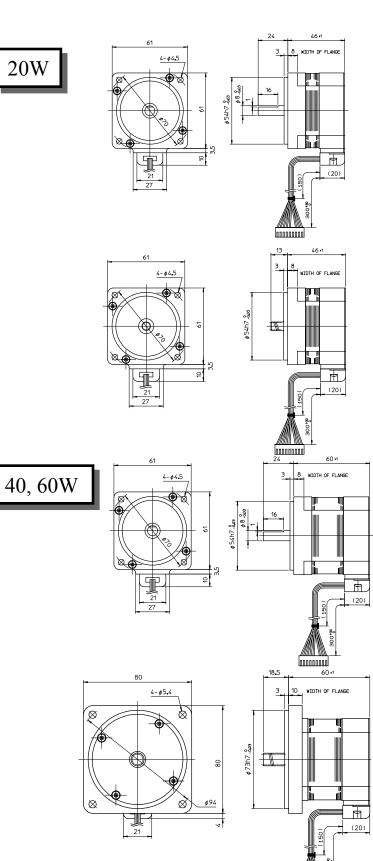

Construction & Features






Flange Size is **Same** as Induction Motor **FLAT & LIGHT** WEIGHT **Strong** Starting Torque : More Compact Design. **Strong** Torque in Slow Speed : Lower Gear Noise & Extended Gear Life Excellent Efficiency: Energy **Saving Reasonable** Price **Low** Vibration & Low Noise: **12S-10P**



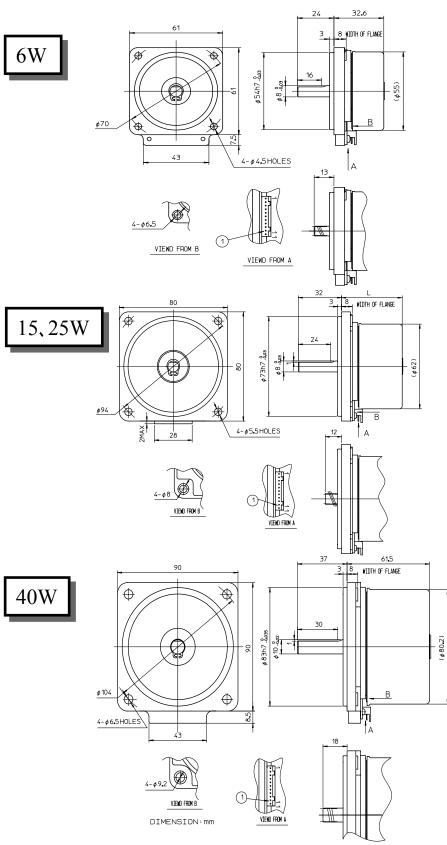


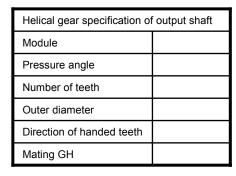
Quick Response: Inner Rotor Type Small & High Power: Neodymium Magnet 40W & 60W are Same Size Low Vibration & Low Noise: 12S-14P Motor Cable: Fixed on Motor

BLDC motor FH series

20W

laaaaaaaaa

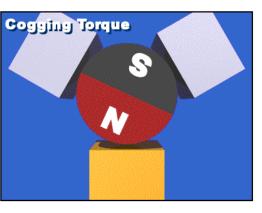



Helical gear specification of output shaft		
Module	0.5	
Pressure angle	20 deg	
Number of teeth	10	
Outer diameter	6.76	
Direction of handed teeth	Right	

Helical gear specification of output shaft		
Module	0.7	
Pressure angle	20 deg	
Number of teeth	10	
Outer diameter	9.4	
Direction of handed teeth	Right	

BLDC motor

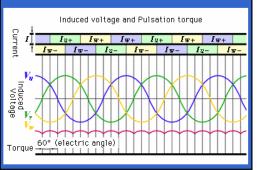
FY series



JAPANESE >>>

L
39
45

Helical gear specification of output shaft		
Module	0.5	
Pressure angle	20 deg	
Number of teeth	10	
Outer diameter	6.98	
Direction of handed teeth	Right	
Mating GH	8H_FBN	


Helical gear specification of output shaft		
Module	0.6	
Pressure angle	20 deg	
Number of teeth	12	
Outer diameter	9.6	
Direction of handed teeth	Right	
Mating GH	9H_FBN	

Number of slots	Number of poles	Least commor multiple
3	2	6
6	4	12
6	8	24
12	8	24
12	10	60
12	14	84
12	16	48

Minimization of induced torque pulsation

Cogging torque is an unevenness felt when you turn the output shaft of a motor by hand. This torque is generated by a **pulling force** between the magnet and iron core of the motor. The more balancing points of the pulling force, the smaller the **cogging torque**.

JAPAN

The number of balancing points is decided by the least common multiple of the number of slots and number of poles.

To minimize cogging torque, our FHD series employs 12 slots and

14 poles (least common multiple: 84), and our FYD series employs

12 slots and 10 poles (least common multiple: 60). To improve characteristics and to make high grade motor drive systems on Blushless DC motors, not only the drive system but the basic motor characteristics must also be studied well and improved. Therefore, Japan Servo achieved improvement such as minimizing the pulsation torque the motor generates and which, we think, obstructs our improvement of motor characteristics (like low noise operation, smooth rotation, and minimized unevenness of rotation).

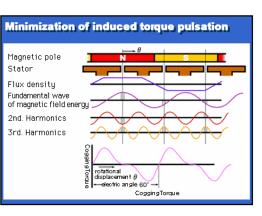
For the same purpose, several new ideas were proposed and applied: **"Slewed slots"** were formed on the stator core lamination, and/or a special pattern was applied to the rotor magnetization.

But these ideas **caused the loss** of certain motor characteristics. So, by these ideas, such motors were never able to have better characteristics and better efficiency at the same time.

Then we researched further the 3 phase excitation Brushless DC motors, to **minimize the pulsation torque** in an ideal & reasonable manner; especially regarding the **combination of the**

number of Stator slots and the number of Rotor poles. The bottom chart shows the relation between general construction and pulsation torque on Permanent magnet field type, 3 phase (excitation) Brushless DC motors

The pulsation torque in permanent magnet field type Brushless motors, there are the cogging torque that is generated from the permanent magnet in the rotor and the shape of stator, and the pulsation torque (inducted voltage pulsation torque) arising from the torque constant variation caused by rotor location change.



Minimization of Cogging Torque

Number	Number of rotor poles			
of slots	(the least common multiple)			
9	8, (72)	10 (90)		
12	8,	10,	14,	16
	(24)	(60)	(84)	(48)
15	12,	14,	16,	18
	(60)	(210)	(240)	(90)

Minimization of Cogging Torque

Iter			12-slots 10-poles	
Induced	Calculated (gf·cm)	584	238	67
InducedVoltage	Measured (gf·cm)	458	204	82
Pulsati	Calculated (PPR)	24	60	84
PulsationRate	Measured (PPR)	24	60	84

Minimization of induced torque pulsation

Iter	Motor	12-slots	12-slots	12-slots
	construction	8-poles	10-poles	14-poles
Induced	Calculated(V)	3.42	3.65	3.62
	Rate (%)	(100.0)	(106.7)	(105.8)
InducedVoltage	Measured(V)	3.5	4.0	4.0
	Rate (%)	(100.0)	(114.3)	(114.3)
PulsationRate	Calculated(V)	33.1	16.4	12.6
	Rate (%)	(100.0)	(49.5)	(38.1)
onRate	Measured(V)	32.0	18.0	16.0
	Rate (%)	(100.0)	(56.0)	(50.0)

Here is an explanation of our research to **minimize Cogging torque**.

We started the study on the combination of the number of stator slots and the number of rotor poles.

To realize 3 phase (excitation) motors, the following are required.

1. The number of slots must be a multiple of 3.

2. Windings must be separated by 120 deg electric angle.

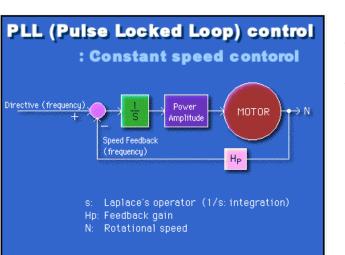
The first table shows the calculation results of the combinations, which meet the above conditions and minimize cogging torque. We have found that there is no combination suitable from cases of 6 or fewer stator slots, and the combination **ratio of 3 to 2** of the "**number of slots**" to "**number of poles**", employed rather popularly, is not suitable enough to minimize cogging torque. So Japan Servo decided to use **"12" stator slots** for our products,

after many studies on shape, productivity, and characteristics. Under this condition, the simulation by calculation and test results are shown in the second table.

From these results, we found and confirmed that the combinations of "12-slots & 10-poles" and "12-slots & 14-poles" are excellent.

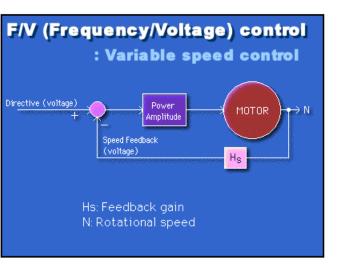
The current flows constantly for the 120 deg period (called the 120 deg current flow method).

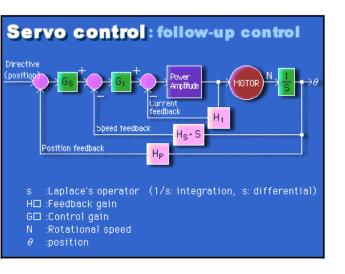
The torque wave form can be shown as full-wave rectified voltage on each phase, and has a pulsation of the 60 deg period.


The last table shows induced voltage, calculated pulsation rate and test results.

From these results, it is confirmed that the combination of "12-slots

& 10-poles" and "12-slots & 14-poles" are excellent.


So, Japan Servo designed and announced the FYD series and BH series (12-slots, 10-poles combination) and FHD series (12-slots, 14-poles combination).


PLL (Pulse Locked Loop) control

This is a control method by phase comparing the feed back frequency signal proportional to the motor speed with the directive frequency. Accurate speed control is achievable and suitable for constant speed control.

F/V (Frequency/ Voltage) control

The speed is controlled by comparing the feedback signal voltage which is proportional to the speed with the set voltage. This is quite suitable for speed adjustment in a rather wide range.

Servo control

This is a control method by position, speed, and current feedback.

It is quite suitable for "follower drive" and "position control". Excellent response to the directives is obtained, but the control is rather complicated and costs more.

Naming rules

Model coding for "set"					
FHD	6	P	20	S	- D3

Name	of	Series
FYD=(Dute	er Rotor
FHD=I	nne	er Rotor

Size o	of driv	e motor
		imensions)
		FHD-series)
	<61mm	
	<80mm	
y =90>	<90mm	

Type of Driver

.,			
P =Pal	m mini	plus	type

B=On-board type driver

J = "J" Book type driver

r	Output	in	Watts

6= 6W , 15=15W

20=20W , 25=25W

40=40W , 60=60W

Moto

driv

Output Shaft type

S=Plain shaft PF=Pinion shaft (strengthened type) PE=Pinion shaft

Power Supply D3=DC24V D5=DC48V

(highly strengthened type)

Model coding for "motor" FH 6 PF 20 N - D3

Name of Series

FY =Outer Rotor FH =Inner Rotor

Name of Series FYD=Outer Rotor

FHD=Inner Rotor

Size of drive motor (mounting surface dimensions)

(motor core size for FHD-series) 6=61×61mm 8=80×80mm 9=90×90mm

Model coding for "driver" FHD 6

131 111131
20 P - D3

Moto

6 = 20=20W , 25=25W **40**=40W , **60**=60W

20=20W , **25**=25W **40**=40W , **60**=60W

Motor Output in Watts

6 = 6W, 15 = 15W

Options

N=Pinion shaft for low noise gear No marking=The others

Power Supply

D3=DC24V D5=DC48V

Size of	drive	motor
(mounting sur (motor core s		

6=61×61mm 8=80×80mm **9**=90×90mm

		_		
r	Output	in	Watts	1
_	6W . 1	5-	=15W	

Type of Driver

P=Palm mini plus type driver B=On-board type driver J = "J" Book type driver

Power Supply

D3=DC24V D5=DC48V

Output	Voltage	Shaft tyme	Model name	Mating GH			
Output Volt	voltage	Shaft type	Motor & Driver	Motor	Driver	Mating GIT	
20W DC24V	Straight shaft	FHD6P20S-D3	FH6S20-D3	FHD620PD3	N/A		
	D024V	Pinion shaft	FHD6P20PF-D3	FH6PF20N-D3	FHD620PD3	6H_EBN	
40W	40W DC24V	Straight shaft	FHD6P40S-D3	FH6S40-D3	FHD640PD3	N/A	
40W D024V	Pinion shaft	FHD6P40PE-D3	FH6PE40N-D3	FHD640PD3	8F_EBN		
60W DC4	DC48V	Straight shaft	FHD6P60S-D3	FH6S60-D3	FHD660JD5	N/A	
	DC40V	Pinion shaft	FHD6P60PE-D3	FH6PE60N-D3	FHD660JD5	8F_EBN	

			Model name			
Output Voltage	Voltage	Shaft type	Maton	Driver	Driver	Mating GH
			Motor	Parm mini type	Simple type	
6W	DC24V	Straight shaft	FY6S6-D3	FYD66PD3	FYD66SD3	N/A
000	D024v	Pinion shaft	FY6PF6N-D3	FYD66PD3	FYD66SD3	6H_FBN
15W	DC24V	Straight shaft	FY8S15-D3	FYD815PD3	FYD815SD3	N/A
1000	D024v	Pinion shaft	FY8PF15N-D3	FYD815PD3	FYD815SD3	8H_FBN
25W	DC24V	Straight shaft	FY8S25-D3	FYD825PD3		N/A
23W DC24V	D024v	Pinion shaft	FY8PF25N-D3	FYD825PD3		8H_FBN
40W DC:	DC24V	Straight shaft	FY9S40-D3	FYD940PD3		N/A
	D024v	Pinion shaft	FY9PF40N-D3	FYD940PD3		9H_FBN

(strengthened type)

(highly strengthened type)

Output Shaft type

S=Plain shaft


PF=Pinion shaft

PE=Pinion shaft

BLDC motor **BH series**

Fully Customized motor and driver

Compact & High Power

Performance

Low Vibration & Noise for 12S-10

Torque Ripple -50% Less Compare to Competitor's one.

Quality

High Quality and Accuracy are made by In-house Machining and assembly. Driver is Fixed on Motor

Without Casing

Order Made products

MOQ 1K/M or more.

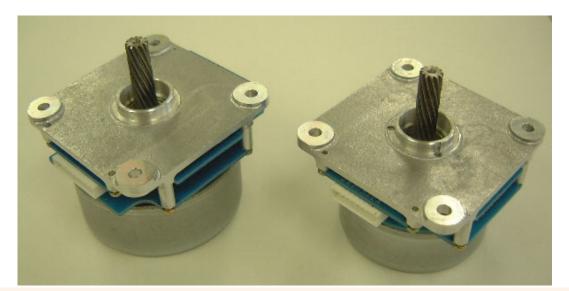
		BH55 BH60		BH70	BH80			
Output(W)(REF)	1	7 to 10	7 to 15	10 to 20	20 to 30	20 to 35	20 to 40	40 to 80
Voltage(Power)(V)	2	24	24	24	24	24	24	24
Voltage(Signal)(V)		5	5	5	5	5	5	5
Speed(r/min)(REF)		500 to 2400						
controlled method	3	PLL						
		Interenal	External	External	External	External	External	External
Rotor diameter(Max)		56	56	63	63	75	84	84
Material of Magnet		Rubber	Plastics	Rubber	Rubber	Plastics	Rubber	Rubber
Motor length(mm)	4	34MAX.	40MAX.	37MAX.	45MAX.	40MAX.	45MAX.	57MAX.
material of PCB	5	FR-1						

Note1: Output is reference. Various rotation speeds are possible.(500 to 2500r/min)

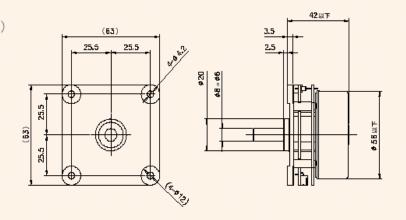
Note2: We can order to DC36V TYPE.

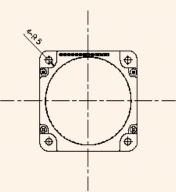
Note3: Manufacturing of Internal CLK / External CLK is possible for each size.

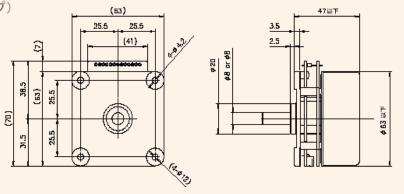
Note4: This is in the case our standard bracket (ADC) is used.

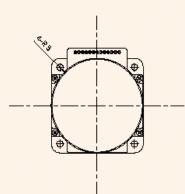

Concerning the bracket of press plate,

it is possible to manufacture according to the castomer's request.


Note5: PCB is possible to be made according to your indicated form as custom-made way.

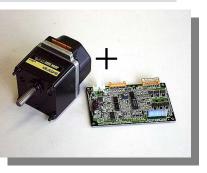

In the case of a custom made PCB, art-work charge is required separately.


BH55 (省スペースタイプ)



BH60

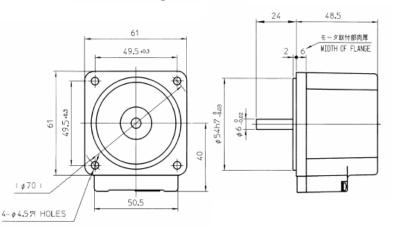
(省スペースタイプ)



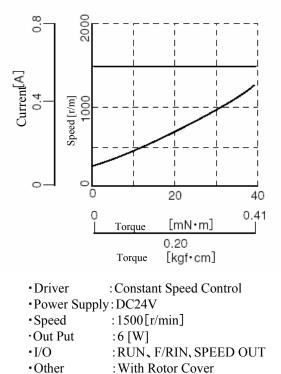
BLDC motor with built-in driver

FYD Series Motor + Simple Type Driver

Motor Size: sqr61*34 Driver Size: 70*105*18


22

Fixed speed BLDC motor and driver electronics in one small package


FYD6U6S-D3 (Out Put6W) Motor Size: sqr61*48.5L

IH6S6N (Out Put6W) Motor Size: sqr 61*75L

FYD6U6S-D3/FYD6U6PF-D3

